Similarities between Fourier and Wavelet Transforms
The fast Fourier transform (FFT) and the discrete wavelet transform (DWT) are both linear operations that generate a data structure that containsThe mathematical properties of the matrices involved in the transforms are similar as well. The inverse transform matrix for both the FFT and the DWT is the transpose of the original. As a result, both transforms can be viewed as a rotation in function space to a different domain. For the FFT, this new domain contains basis functions that are sines and cosines. For the wavelet transform, this new domain contains more complicated basis functions called wavelets, mother wavelets, or analyzing wavelets.
Both transforms have another similarity. The basis functions are localized in frequency, making mathematical tools such as power spectra (how much power is contained in a frequency interval) and scalegrams (to be defined later) useful at picking out frequencies and calculating power distributions.
Dissimilarities between Fourier and Wavelet Transforms
The most interesting dissimilarity between these two kinds of transforms is that individual wavelet functions are localized in space. Fourier sine and cosine functions are not. This localization feature, along with wavelets' localization of frequency, makes many functions and operators using wavelets "sparse" when transformed into the wavelet domain. This sparseness, in turn, results in a number of useful applications such as data compression, detecting features in images, and removing noise from time series.One way to see the time-frequency resolution differences between the Fourier transform and the wavelet transform is to look at the basis function coverage of the time-frequency plane (5). Figure 1 shows a windowed Fourier transform, where the window is simply a square wave. The square wave window truncates the sine or cosine function to fit a window of a particular width. Because a single window is used for all frequencies in the WFT, the resolution of the analysis is the same at all locations in the time-frequency plane.
Fig. 1. Fourier basis functions, time-frequency tiles, and coverage of the time-frequency plane.
An advantage of wavelet transforms is that the windows vary. In order to isolate signal discontinuities, one would like to have some very short basis functions. At the same time, in order to obtain detailed frequency analysis, one would like to have some very long basis functions. A way to achieve this is to have short high-frequency basis functions and long low-frequency ones. This happy medium is exactly what you get with wavelet transforms. Figure 2 shows the coverage in the time-frequency plane with one wavelet function, the Daubechies wavelet.
Fig. 2. Daubechies wavelet basis functions, time-frequency tiles, and coverage of the time-frequency plane.
One thing to remember is that wavelet transforms do not have a single set of basis functions like the Fourier transform, which utilizes just the sine and cosine functions. Instead, wavelet transforms have an infinite set of possible basis functions. Thus wavelet analysis provides immediate access to information that can be obscured by other time-frequency methods such as Fourier analysis.

No comments:
Post a Comment